Organizational culture and the analogy of machine learning

These days efforts to revamp company culture are in vogue. I’m going to attempt to articulate what I see as a connection between machine learning and efforts to change company culture. Stay with me here a bit because the analogy doesn’t show up until the fourth paragraph and I need to share a little bit of background first. 🙂

One group leading the charge to change company culture is Partners in Leadership (https://www.partnersinleadership.com). They use a tool that identifies the following flow toward changing results. It’s a pyramid that moves from experiences to results in the following steps: EXPERIENCES >> BELIEFS >> ACTIONS >> RESULTS. According to the model, you start with the results you want to see as an organization and then move backward until you’ve arrived at the experiences that you need to create. The thinking is that experiences shape beliefs, which shape actions, which shape results. They maintain that you cannot simply skip ahead results until the rest of the house is in order first.

As for the experiences, they actually need to be high quality experiences. Partners in Leadership breaks these experiences into four types (big paraphrase here): 1) Easy to interpret, 2) Needing work to interpret, 3) Very little meaning, so there isn’t much to interpret, and 4) Experiences that, well, kind of did the opposite of what they were intended to do.

Now it is time for the machine learning analogy! Boiled down, machine learning is essentially learning from experiences (data) in order to shape beliefs (trained statistical models). These beliefs/models turn into actions (acting on the outcome of a model), which leads to results. Critical to this process is the experiential data and its interpretation (the model). We train our models by feeding data (experiences) into them. Why am I making this connection? Because organizations are really struggling to understand machine learning. Why not piggy back off of something that they’re learning already? Results from machine learning algorithms are no different results gleaned from an organizations’ cultural change initiatives. What data do you have that you can use to shape your statistical models? Which actions do you need to take to get results? You can change your culture and understand machine learning at the same time!

Jeshua